(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ack(s(s(x15_1)), 0) →+ ack(x15_1, ack(s(x15_1), 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x15_1 / s(x15_1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack
(8) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
ack
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ack(
gen_0':s2_0(
1),
gen_0':s2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, 0)))
Induction Step:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
ack(gen_0':s2_0(0), ack(s(gen_0':s2_0(0)), gen_0':s2_0(+(1, n4_0)))) →IH
ack(gen_0':s2_0(0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)